Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration
نویسندگان
چکیده
Sonophoresis can increase skin permeability to various drugs in transdermal drug delivery. Cavitation is recognized as the predominant mechanism of sonophoresis. Recently, a new logical approach to enhance the efficiency of transdermal drug delivery was tried. It is to utilize the engineered microbubble and its resonant frequency for increase of cavitation activity. Actively-induced cavitation with low-intensity ultrasound (less than ~1 MPa) causes disordering of the lipid bilayers and the formation of aqueous channels by stable cavitation which indicates a continuous oscillation of bubbles. Furthermore, the mutual interactions of microbubble determined by concentration of added bubble are also thought to be an important factor for activity of stable cavitation, even in different characteristics of drug. In the present study, we addressed the dependence of ultrasound contrast agent concentration using two types of drug on the efficiency of transdermal drug delivery. Two types of experiment were designed to quantitatively evaluate the efficiency of transdermal drug delivery according to ultrasound contrast agent concentration. First, an experiment of optical clearing using a tissue optical clearing agent was designed to assess the efficiency of sonophoresis with ultrasound contrast agents. Second, a Franz diffusion cell with ferulic acid was used to quantitatively determine the amount of drug delivered to the skin sample by sonophoresis with ultrasound contrast agents. The maximum enhancement ratio of sonophoresis with a concentration of 1:1,000 was approximately 3.1 times greater than that in the ultrasound group without ultrasound contrast agent and approximately 7.5 times greater than that in the control group. These results support our hypothesis that sonophoresis becomes more effective in transdermal drug delivery due to the presence of engineered bubbles, and that the efficiency of transdermal drug delivery using sonophoresis with microbubbles depends on the concentration of microbubbles in case stable cavitation is predominant.
منابع مشابه
Quantitative evaluation of sonophoresis efficiency and its dependence on sonication parameters and particle size.
Transdermal drug delivery makes a critical contribution to medical practice and some advantages over conventional oral administration and hypodermic injection. Enhancement of percutaneous absorption or penetration of therapeutic agents (ie, drugs and macromolecules) by ultrasound, termed sonophoresis, has been applied and studied for decades. In this study, the penetration percentage through po...
متن کاملTransdermal Drug Delivery Aided by an Ultrasound Contrast Agent: An In Vitro Experimental Study
Sonophoresis temporarily increases skin permeability such that medicine can be delivered transdermally. Cavitation is believed to be the predominant mechanism in sonophoresis. In this study, an ultrasound contrast agent (UCA) strategy was adopted instead of low frequency ultrasound to assure that cavitation occurred, and the efficacy of sonophoresis with UCA was quantitatively analyzed by optic...
متن کاملSonophoresis Effect on the Permeation of Metronidazole Using 3d Skin Equivalent
Transdermal drug delivery is highly advantageous method for drug administration, yet the compact structure of stratum corneum is an effective barrier which limited the use of this route to very few drug molecules. Ultrasound enhances the permeation through the skin by altering this barrier function in a phenomenon named sonophoresis. This study aimed to evaluate the effect of variable ultrasoni...
متن کاملInvestigation of acoustic properties of silica coated gold nanoparticle as contrast agent for Ultrasonography
Interoduction: Ultrasound images have often low contrast due to small differences in acoustic impedance between different tissues. Air or gas microbubbles that surrounded by membrane are most of the contrast agents in ultrasound imaging. Problems such as instability in sound pressure and inability in penetrating from the blood vessel into body tissues limited the use of microbubbles into the in...
متن کاملDendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac
The purpose of the present study was to develop a novel transdermal drug-delivery system comprising a polyamidoamine dendrimer coupled with sonophoresis to enhance the permeation of diclofenac (DF) through the skin. The novel transdermal drug-delivery system was developed by using a statistical Plackett-Burman design. Hairless male Wistar rat skin was used for the DF-permeation study. Coupling ...
متن کامل